
Cheng Fu1, Huili Chen1, Haolan Liu1, Xinyun Chen3,
Yuandong Tian2, Farinaz Koushanfar1, Jishen Zhao1,

1UC San Diego, 2Facebook AI Research, 3UC Berkeley

Coda: An End-to-End
Neural Program Decompiler

Coda	is	the	abbreviation	for	CodeAttack 1

Background: Decompilation
§Goal of Decompilation:
§Binary executables to High-level programming language

§Decompilation for SW defense:
oMalware analysis
oVulnerability detection and fixing
oBinary comparison/verification

§Decompilation for SW attacking:
oReverse engineering software binary with copyright protection for illegal

usage.

2

Challenges
§ Prior decompilers (e.g. Hex-rey [1], RetDec [2]…) focus on
reverse
engineering the functionality of binary executables:
o Semantics not guaranteed

3

[1] HexRey, 2018, https://www.hex-rays.com/products/decompiler/
[2] RetDec, 2019, https://retdec.com/

Source Code Decompiled Code

RetDec

§Many hardware architectures (ISA): x86, MIPS, ARM

§ Many Programming Languages (PL)
o Extra Human effort to extend to the new version of the hardware architectures or

programming languages

§ Many formats of binary files
o .efl, .bin, .exe …

Challenges

4

§ Intuitively, decompilation is translation problem and can be solved
using auto-encoder for machine translation:

§ However, a naïve sequence-to-sequence model is hard to
capture the meaning of low-level code and learn the grammar of
high-level PL.

5

Decompilation as Machine translation

Encoder Recurrent Neural Network
(RNN)

Decoder Recurrent Neural Network
(RNN)

Coda Design
Leverage both syntax and dynamic information

6

Stage 2

iterative
Error

Correction

Stage 1

Code
Sketch
Generation

End-to-End Framework

Low-level code High level program

Find good candidates
Iteratively correct the candidates
towards perfect match

§ What should the encoder captures?
§ inter and intra instruction dependencies

§Instruction-aware encoder :
§ Coda leverages N-ary Tree Encoder [3] to capture
inter and intra dependencies of the low-level code.

o Opcode and its operands are encoded
together.

o Preserve the order of operands
§ Different encoders are used for encoding different
instruction types, namely, memory (mem), branch
(br) and arithmetic (art).

Stage 1: Code Sketch Generation

7

[3] Tai,	Kai	Sheng,	Richard	Socher,	and	Christopher	D.	Manning.
"Improved	semantic	representations	from	tree-structured	long	short-term	memory	networks."
arXiv preprint	arXiv:1503.00075 (2015).

§ Tree decoder for Abstract Syntax Tree (AST) generation:
§ AST can be equivalently translated into its corresponding high level Program
§ Advantages:

o Prevent error propagation/ Preserve node dependency / easy to capture PL grammar
o Boundaries are more explicit (terminal nodes)

§ Parent and input attention feeding mechanism

Stage 1: Code Sketch Generation

8

Stage 2: Iterative Error Correction
§ The sketch generated in Stage 1 may contain errors:

§ Mispredicted tokens, missing lines, redundant lines

§Dynamic information that can be leveraged:
o I/O pair to identify the correctness of the functionality
o Recompile the program back into low-level code (𝝓′)---> should

match with the golden low-level input (𝝓).

Golden program
If(a > c) {

a = b + c * a;
b = a – c ;

}

Mispredicted
If(a > b) {

a = b + c * a;
b = a - b;

}

Missing lines
If(a > c) {

a = b + c * a;
}

Redundant lines
If(a > c) {

a = b + c * a;
b = a;
b = a;

}

9

Stage 2: Iterative Error Correction

§ Correct the error using an Error Correction machine (EC machine) guided
by the Error Predictor (EP).
§ Optimization techniques:

§ Prevent the false alarm by recompile the updated sketch code and check
its Levenshtein edit loss from the golden input.
§ Ensemble multiple error predictors to cover more potential errors for
updates.

10

G	A	C	G
G	C	G

G	A	C	G
G	G	C	G

G	A	C	G
G	A	C	G

ED 1 1 0

Error	Predictor(𝜙, 𝜙’) (𝐸𝑟𝑟	𝑇𝑦𝑝𝑒	, 𝐸𝑟𝑟	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛)

Stage 2: Iterative Error Correction

11

§ Iterative updating workflow

Experimental Setup
• Compiler configuration : clang –O0 (disabled optimization)
• Benchmarks:
◦ Synthetic programs:
qKarel library (Karel) – only function calls (control graph)
qMath library (Math) – function calls with arguments (Data dependency +

control graph)
qNormal expressions (NE) – (^,&,*,-,<<,>>,|,% ….) (Data dependency +

control graph)
qMath library + Normal expressions (Math + NE) – replaces the variables in

NE with a return value of math function. (Data dependency + control graph)
◦ Metrics:
qToken Accuracy : The percentage of predicted tokens that match with the ground-

truth ones.
qProgram Accuracy: The percentage of programs that yields 100% Token accuracy.

12

Results – Stage 1 Performance
• Token accuracy across benchmarks

o Coda yields the highest token accuracy across all benchmarks (96.8% on average)
compared to all the other methods.
o Coda engenders 10.1% and 80.9% margin over a naive Seq2Seq model with and
without attention.
o More tolerant to the growth of program length.

XS short	programs,	XL long	programs

Baseline

Ours

13

Examples

14

Karel.h

Math.h

err

Examples

15

Normal Expressions

Math.h + Normal Expressions

s2s = sequence-to-sequence with attention I2a = instruction encoder to AST decoder with attention

Baseline

Coda

Results – Stage 2 Performance

16

• Part (i): By ensemble 10 EP, Coda achieves 90.8% error detection rate.
• Part (ii): Coda’s EC machine increases the program accuracy from 30% to
82% on average for Inst2AST-based code sketch generation, respectively.

Results -- Overall
§ Coda vs. traditional decompiler (RetDec)
◦ Lines of code: ~10K vs. ~500K -- 50x reduction
◦ Toolkit size: ~10MB Neural network size vs. ~5GB toolkit size -- 500x reduction
◦ Program accuracy: 82% vs. no semantics guarantee

17

Discussion
§ Extremely long programs
◦LSMT is not good at remembering long sequence.
◦Unlike nature language, low-level PL does not have explicit
breakup position.

§ Sensitive to ISA
§ Complicated data type / structure / class ….
§ Compiler Optimizations / Obfuscation …

18

19

Summary of Coda

§ The first neural-based decompilation framework, which preserves both the
semantics and the functionality of the high-level program

§ Decomposes the decompilation task into of two key phases -- code sketch
generation and iterative errors correction

§ Significantly outperforms the Seq2Seq model and traditional decompilers

Cheng Fu1, Huili Chen1, Haolan Liu1, Xinyun Chen3,
Yuandong Tian2, Farinaz Koushanfar1, Jishen Zhao1,

1UC San Diego, 2Facebook AI Research, 3UC Berkeley

Coda: An End-to-End
Neural Program Decompiler

20

