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Background: Decompilation
§Goal of Decompilation:
§Binary executables to High-level programming language

§Decompilation for SW defense: 
oMalware analysis
oVulnerability detection and fixing 
oBinary comparison/verification

§Decompilation for SW attacking: 
oReverse engineering software binary with copyright protection for illegal 

usage.
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Challenges
§ Prior decompilers (e.g. Hex-rey [1], RetDec [2]…) focus on 
reverse
engineering the functionality of binary executables: 
o Semantics not guaranteed 
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[1] HexRey, 2018, https://www.hex-rays.com/products/decompiler/
[2] RetDec, 2019, https://retdec.com/

Source Code Decompiled Code

RetDec



§Many hardware architectures (ISA): x86, MIPS, ARM

§ Many Programming Languages (PL)
o Extra Human effort to extend to the new version of the hardware architectures or 

programming languages

§ Many formats of binary files
o .efl, .bin, .exe …

Challenges
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§ Intuitively, decompilation is translation problem and can be solved 
using auto-encoder for machine translation:

§ However, a naïve sequence-to-sequence model is hard to 
capture the meaning of low-level code and learn the grammar of 
high-level PL.
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Decompilation as Machine translation

Encoder Recurrent Neural Network 
(RNN)

Decoder Recurrent Neural Network 
(RNN)



Coda Design
Leverage both syntax and dynamic information
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End-to-End Framework

Low-level code High level program

Find good candidates
Iteratively correct the candidates 
towards perfect match



§ What should the encoder captures?
§ inter and intra instruction dependencies 

§Instruction-aware encoder :  
§ Coda leverages N-ary Tree Encoder [3] to capture 
inter and intra dependencies of the low-level code.

o Opcode and its operands are encoded 
together.

o Preserve the order of operands
§ Different encoders are used for encoding different 
instruction types, namely, memory (mem), branch
(br) and arithmetic (art).

Stage 1: Code Sketch Generation
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[3] Tai,	Kai	Sheng,	Richard	Socher,	and	Christopher	D.	Manning.
"Improved	semantic	representations	from	tree-structured	long	short-term	memory	networks."
arXiv preprint	arXiv:1503.00075 (2015).



§ Tree decoder for Abstract Syntax Tree (AST) generation: 
§ AST can be equivalently translated into its corresponding high level Program
§ Advantages:

o Prevent error propagation/ Preserve node dependency / easy to capture PL grammar
o Boundaries are more explicit (terminal nodes)

§ Parent and input attention feeding mechanism

Stage 1: Code Sketch Generation
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Stage 2: Iterative Error Correction 
§ The sketch generated in Stage 1 may contain errors:

§ Mispredicted tokens,  missing lines, redundant lines

§Dynamic information that can be leveraged:
o I/O pair to identify the correctness of the functionality
o Recompile the program back into low-level code (𝝓′)---> should 

match with the golden low-level input (𝝓).

Golden program
If( a > c ) {

a = b + c * a;
b = a – c ;

}

Mispredicted
If( a > b ) {

a = b + c * a;
b = a - b;

}

Missing lines
If( a > c ) {

a = b + c * a;
}

Redundant lines
If( a > c ) {

a = b + c * a;
b = a;
b = a;

}
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Stage 2: Iterative Error Correction 

§ Correct the error using an Error Correction machine (EC machine) guided 
by the Error Predictor (EP). 
§ Optimization techniques:

§ Prevent the false alarm by recompile the updated sketch code and check 
its Levenshtein edit loss from the golden input.
§ Ensemble multiple error predictors to cover more potential errors for 
updates.
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Stage 2: Iterative Error Correction 
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§ Iterative updating workflow 



Experimental Setup
• Compiler configuration : clang –O0 ( disabled optimization )
• Benchmarks:
◦ Synthetic programs:
qKarel library (Karel) – only function calls (control graph)
qMath library (Math) – function calls with arguments (Data dependency + 

control graph)
qNormal expressions (NE) – (^,&,*,-,<<,>>,|,% ….) (Data dependency + 

control graph) 
qMath library + Normal expressions (Math + NE) – replaces the variables in 

NE with a return value of math function. (Data dependency + control graph)
◦ Metrics:
qToken Accuracy :  The percentage of predicted tokens that match with the ground-

truth ones.
qProgram Accuracy: The percentage of programs that yields 100% Token accuracy.
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Results – Stage 1 Performance
• Token accuracy across benchmarks 

o Coda yields the highest token accuracy across all benchmarks (96.8% on average) 
compared to all the other methods.
o Coda engenders 10.1% and 80.9% margin over a naive Seq2Seq model with and 
without attention.
o More tolerant to the growth of program length.

XS short	programs,	XL long	programs

Baseline

Ours
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Examples
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Karel.h

Math.h

err



Examples
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Normal Expressions

Math.h + Normal Expressions



s2s = sequence-to-sequence with attention I2a = instruction encoder to AST decoder with attention

Baseline

Coda

Results – Stage 2 Performance
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• Part (i): By ensemble 10 EP, Coda achieves 90.8% error detection rate.
• Part (ii): Coda’s EC machine increases the program accuracy from 30% to 
82% on average for Inst2AST-based code sketch generation, respectively.



Results -- Overall
§ Coda vs. traditional decompiler (RetDec)
◦ Lines of code: ~10K vs. ~500K -- 50x reduction
◦ Toolkit size: ~10MB Neural network size vs. ~5GB toolkit size -- 500x reduction
◦ Program accuracy: 82% vs. no semantics guarantee
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Discussion 
§ Extremely long programs
◦LSMT is not good at remembering long sequence.
◦Unlike nature language, low-level PL does not have explicit 
breakup position. 

§ Sensitive to ISA
§ Complicated data type / structure / class ….
§ Compiler Optimizations / Obfuscation …
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Summary of Coda

§ The first neural-based decompilation framework, which preserves both the 
semantics and the functionality of the high-level program

§ Decomposes the decompilation task into of two key phases -- code sketch 
generation and iterative errors correction

§ Significantly outperforms the Seq2Seq model and traditional decompilers
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